MONITOREO Y ANÁLISIS DE LA SITUACIÓN GEOPOLÍTICA EN EL MUNDO Y SU IMPLICANCIA EN LA PATAGONIA

Tronador II: cómo se construye el lanzador argentino

Bariloche – Se trata de la segunda etapa del proyecto de desarrollo de lanzadera espacial o cohete de transporte argentino a cargo de la Comisión Nacional de Actividades Espaciales (CONAE), organismo gubernamental responsable del Plan Nacional Espacial de Argentina. Está proyectado para colocar satélites en órbita polar y para enviar cargas a órbitas bajas. Invap forma parte del proyecto.
Marcos Actis es el decano de la Facultad de Ingeniería de la Universidad Nacional de La Plata y dirige un equipo de 150 investigadores, docentes, becarios y técnicos que tiene a su cargo la fabricación de seis vehículos experimentales y del Tronador II, el primer lanzador espacial para colocar satélites en órbita que desarrolla íntegramente un país latinoamericano.

El ambicioso proyecto liderado por la Comisión Nacional de Actividades Espaciales agrupa a más de 600 profesionales, contando los 250 que trabajan en la compañía VENG SA, contratista principal, y otros dos centenares en numerosos institutos de investigación del Conicet, como el Centro de Investigaciones Ópticas, INVAP, el Instituto Argentino de Radioastronomía, las universidades de Buenos Aires, Tecnológica Nacional, la de Córdoba y la de Mar del Plata, el Instituto Universitario Aeronáutico, la Comisión Nacional de Energía Atómica, el Servicio Meteorológico Nacional, el Instituto Balseiro, Y-TEC (centro de desarrollo de tecnología de YPF) y la Planta Piloto de Ingeniería Química (Plapiqui). También participan pymes encargadas de desarrollar algunas partes específicas.
Actis y sus colegas de la UNLP trabajan en proyectos de la Conae desde la época del SAC-B, el satélite argentino de observación astronómica que se lanzó en 1996.

De los cinco instrumentos argentinos del SAC-D, cuatro se construyeron en la facultad. Y dos de los más importantes, el radiómetro y la cámara infrarroja, se hicieron en el Grupo de Ensayos Mecánicos Aplicados (GEMA, de la UNLP). “Ahora estamos haciendo allí el centro tecnológico aplicado aeroespacial, que ya fue aprobado por la universidad”, relata.

El futuro lanzador de satélites argentino Tronador II les permite pensar a las autoridades y técnicos del Invap y de Arsat en la posibilidad cada vez más cerca de ahorrar enorme cantidad de recursos y tiempo en la colocación en el espacio de los aparatos que se fabrican en Bariloche.

De hecho, el Arsat 1, que fue fabricado por Invap a pedido de la agencia espacial argentina Arsat y es el primer satélite de comunicaciones construido en nuestro país, se lanzó desde Guyana Francesa, en un periplo que incluyó traslados terrestres y aéreos, con escalas.

Se calcula que por su bajo costo de lanzamiento el Programa Tronador, una vez constituido como tal, sería capaz de realizar entre 5 y 10 lanzamientos al año; dependiendo de la demanda generada, derivada no solo del Plan Nacional Espacial de Argentina, sino también de los diferentes acuerdos de cooperación con otras agencias espaciales internacionales.

Un cohete como el Tronador, diseñado para inyectar satélites de unos 250 kg en órbitas de baja altura, a alrededor de 700 km de la superficie terrestre, puede tener más de 3000 piezas. En este caso, la idea fue que, salvo excepciones, estuviera íntegramente diseñado y producido en el país. Un desafío mayor si se tiene en cuenta que exige desarrollar materiales delgados, soldaduras de alta calidad e instrumental liviano, todo prácticamente sin disponer de información técnica.

cohete1

El Tronador está pensado como un vehículo de navegación autónoma, es decir que una vez programado busca su órbita, algo que nunca se había hecho en el país.

Tendrá dos “etapas”. La primera es la que lo impulsa algo más de los primeros dos minutos de vuelo hasta que logra vencer la fuerza de gravedad. Ésta llega hasta los 100 km de altura, se desprende y cae al océano. Para eso se emplea el 90% del combustible. Con el 10% restante, la segunda etapa sigue hasta inyectar el satélite en la órbita predeterminada.

Por ser un vehículo de combustible líquido (a diferencia de un misil, que usa combustible sólido), despega a muy baja velocidad. Un misil sale a una aceleración de 7 u 8G [1G es la aceleración que produciría la gravedad en un objeto cualquiera en condiciones ideales] y éste despega a 1,4 G y se va acelerando: de 800 km

Completo, el Tronador pesará alrededor de 70.000 kilos, de los cuales 63.000 corresponderán al combustible. El vehículo en sí, que medirá algo más de 30 metros de altura por dos metros y medio de diámetro, sólo pesará 7000 kilos.

El Tronador II se diseñó para inyectar con alta precisión en órbitas polares cargas útiles livianas para observación de la Tierra. Todos sus motores son de desarrollo local y funcionan con combustibles y oxidantes líquidos en sus dos etapas, también desarrollados localmente -explica el ingeniero Pablo Servidia, responsable del Sistema de Navegación, Guiado y Control, e investigador principal del área de Acceso al Espacio de la Conae-.

Los motores con propelentes líquidos se destacan por su alta energía específica, su escalabilidad, la posibilidad de regular fácilmente el tiempo de quemado y, en consecuencia, por lograr la precisión de posicionamiento requerida. Además, para mejorar la confiabilidad de la fase final del vuelo, el motor que se desarrolló para la última etapa utiliza propelentes hipergólicos, es decir que se encienden al simple contacto.”

Según explica Servidia, el motor de la primera etapa ya se probó en 2014 y, junto con el de la última etapa, que impulsa la parte superior, se ensayará este año en los vehículos experimentales VEx5. Durante las pruebas tratarán de ajustar el encendido en condiciones de ingravidez y vacío, que son difíciles de replicar en tierra.

Este combustible que utilizará el Tronador está en manos de un equipo de Y-TEC. Es de un tipo que sólo producen tres países: Estados Unidos, China y Rusia.

Además de promover el desarrollo de nuevas tecnologías que actualmente no se producen en el país, el proyecto también estimula la formación de recursos humanos. “Enviamos docentes y estudiantes a capacitarse afuera -cuenta Actis-: algunos viajaron gracias al plan Becar, otros, a hacer másteres y doctorados en ingeniería aeroespacial… Para medir el impacto que tiene este proyecto, baste con mencionar que la carrera de Ingeniería Aeronáutica solía tener 70 inscriptos y este año tuvo 140”.

FUENTE: El Cordillerano

También te puede interesar:

LAS MÁS VISTAS
___________________________

Municipalidad de Patagones

Suscríbete al Boletín de Noticias


Tecno Planta